

1

The Cook Manager System
Shiri Haim, ID:302633722

As a cooking and baking enthusiast and as someone who always tries to cook a

few different dishes at the same time, I wanted to create an app that will manage the

cooking and baking in the kitchen. The application allows you to define for each pot or

pan on the stove, what is cooked on it. In addition, you can set a timer for the food that

is put into the oven. Once the timer is finished or any of the materials in the pots

reaches its boiling point (for each different material, there is a different boiling point),

the application will alert. In this way there is one manager which handle all the

different baking and cooking dishes in the kitchen and allows you to focus on the

cooking itself.

Procedure

There are 3 main components involved in this system. The first, is the DS18B20 1-Wire

Digital Thermometer. This is a waterproof temperature sensor which measures

temperatures from -55℃ to +125℃. The second, is the CC1350 Launchpad. The third is

an android application (written in NativeScript and tested on Galaxy S7). The following

diagram describes the communication between those components:

2

Application description

 Assumes a client wants to get alert from the Cook Manager app when a dark chocolate

in his pot are getting to 48℃ (the required temperature for dark chocolate tempering).

He inserts the temperature sensor to the pot and put the pot on the stove.

Than he open the Cook Manager application and choose the appropriate bluetooth

device (simple peripheral).

After the connection to the bluetooth device succeed, the client will routed to the

manager screen. Then he will choose the ‘Tempering dark chocolate’ option, from the

given list, and will tap on start button. From this point, the application will read the

temperature from the sensor via the launchpad every 3 seconds and update the bottom

label.

3

If the readed temperature is over the 48℃, the application alert to the client for

removing the pot from the stove.

4

Additional application features

1. Simple timer for the oven. It alerts when the time is up.

2. Stopping measure temperature in any time.

3. Choosing different materials and appropriate temperatures accordingly.

Implementation details

(1) The hardware diagram and a real picture of the prototype

5

(2) The communication between the DS18B20 sensor and the launchpad

The DS18B20 send the measured temperature to the launchpad over a 1-Wire interface.

I had to implement this interface for our launchpad (see the DS18B20.c file), since I

didn’t found any library that should work with this launchpad. This file also contains a

public getTemperature() function which do all the required process for reading values

and returning the low and high values from the sensore. Those values should returned

only when the temperature is stable (this is an optimization that I choose to do after I

found that when starting measure the material, the first reads return values which

growing fast).

Measuring temperature with 1-wire interface based on 3 steps: reset-convert-read. The

reset function should consists of a reset pulse transmitted by the bus master (the

launchpad in our case) which will followed by presence pulse(s) transmitted by the

slave(s) (the sensor in our case). Then a temperature conversion is required. Sending

this command to the sensor will convert the temperature and stored the thermal data

6

in the scratchpad memory in a 16-bit. Than a read command should be send twice, one

for getting the low value, and the other for getting the high value.

(3) The communication between the launchpad and the android application

The launchpad firmware communicate with an android application over bluetooth. The

readable characteristic 2 (FFF2) retrieve the measured temperature (invoking the

getTemparture(..) function) from the sensor and send the results to the client. The

client convert those 2 values to unsigned int.

The firmware based mainly on the simple_peripheral example project that we also used

in the homeworks. A change has been made for the returned type of the characteristic

2. Instead of returning value of type uint8_t, an array of size 2 of type uint8_t is

returned. This change has been made since in this implementation, characteristic 2

returns the getTemperature function returned value.

Results

For testing the results, I compared them to the results getting from a real digital

temperature for food. I found that the differences were less than 2℃.

Difficulties and challenges

The big challenge in this project for me, was to understand how to compose the sensor

to the launchpad and to implement the 1-wire interface for this launchpad. Since I had

never compose electrical components, and I have no background in Electrical

Engineering, I had to learn a lot for composing the sensor to the board in the

7

appropriate way. After getting some composition of the hardware, I tried to use some

implementation of the 1-wire interface for the CC1350 Launchpad, which I found in the

ti rtos forums (uploaded be a customer, not something official). This try failed and I got

the same number from the sensor without relation to the measured temperature. The

difficult was in analysys where are the problems, in the hardware or in the firmware.

Since I got some value from the sensor, which was different from the value I got when

the sensor was disconnected from the board, I decided to focus first on the interface

implementation. After reading again and again the DS18B20 specifications, I found that

I didn’t wait enough time between the sending of the commands and that the reset

function was not properly implemented for this board. I found some examples of

implementations of this interface for arduino, and another example of implementation

for ​SK40C + PIC16F877A​ board and used them and some information I read in the ti

rtos documentation of this board for fixing those bugs in my implementation, and

finally it worked.

Movie:

https://www.dropbox.com/s/6dyedhown91uw1z/TheCookManagerSystem.mp4?dl=0

Bibliography

DS18B20 specifications, ​https://www.4project.co.il/documents/doc_2761_2633.pdf

TI RTOS site and documentations for CC1350 Launchpad,

http://www.ti.com/tool/LAUNCHXL-CC1350

https://www.dropbox.com/s/6dyedhown91uw1z/TheCookManagerSystem.mp4?dl=0
https://www.4project.co.il/documents/doc_2761_2633.pdf
http://www.ti.com/tool/LAUNCHXL-CC1350

8

 NativeScript site, ​https://www.nativescript.org/

Inspiration projects:

https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sens

or-and-arduino-9cc806

https://tutorial.cytron.io/2012/11/01/ds18b20-temperature-sensor/

https://e2e.ti.com/support/wireless_connectivity/simplelink_wifi_cc31xx_cc32xx/f/968/t

/456513

https://www.nativescript.org/
https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806
https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806
https://tutorial.cytron.io/2012/11/01/ds18b20-temperature-sensor/
https://e2e.ti.com/support/wireless_connectivity/simplelink_wifi_cc31xx_cc32xx/f/968/t/456513
https://e2e.ti.com/support/wireless_connectivity/simplelink_wifi_cc31xx_cc32xx/f/968/t/456513

